笔记|统计学习方法:决策树(二)

决策树的剪枝

由于决策树的生成算法是递归实现的,所以对已知数据的分类十分准确,但对未知数据的预测就不那么准确,就产生了过拟合的现象。 所以就产生了一种将已生成的树进行简化的过程,称为:“剪枝”

剪枝算法定义

决策树的剪枝往往通过极小化决策树整体的损失函数来实现。 设

  • 的叶子结点个数为
  • 是树的叶子结点
  • 该叶子结点有个样本点,其中类的样本点有
  • 为叶子结点上的经验熵
  • 为参数 则损失函数定义为

其中经验熵为

记作,代入

这时有 式中

  • 表示模型对训练数据的预测误差(模型与训练数据的拟合程度)
  • 表示模型复杂度
  • 参数控制着两者之间的联系,参数较大的促使选择较为简单的模型,参数较小则选择复杂的模型,只考虑训练数据的拟合程度,不考虑模型复杂度。
剪枝

剪枝就是当确定时,选择损失函数最小的模型,即损失函数最小的子树。 决策树的生成只考虑了通过提高信息增益对训练数据的更好拟合,而剪枝通过优化损失函数还考虑减小模型复杂度。

树剪枝算法使用

  • 输入:生成算法产生的整个树,参数
  • 输出:修剪后的子树
  1. 计算每个节点的经验熵

  2. 递归得从树的叶子结点向上回缩

    设一组叶节点回缩到其父结点之前与之后的整体树分别为,其对应的损失函数为。如果

  3. 返回第二步,直到不能继续位置,得到损失函数最小的子树。

Python代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import math
import numpy as np
# 创建数据集 备注 李航《统计学习方法》中表5.1 贷款申请数据数据
def createDataLH():
data = np.array([['青年', '否', '否', '一般']])
data = np.append(data, [['青年', '否', '否', '好']], axis = 0)
data = np.append(data, [['青年', '是', '否', '好']
, ['青年', '是', '是', '一般']
, ['青年', '否', '否', '一般']
, ['中年', '否', '否', '一般']
, ['中年', '否', '否', '好']
, ['中年', '是', '是', '好']
, ['中年', '否', '是', '非常好']
, ['中年', '否', '是', '非常好']
, ['老年', '否', '是', '非常好']
, ['老年', '否', '是', '好']
, ['老年', '是', '否', '好']
, ['老年', '是', '否', '非常好']
, ['老年', '否', '否', '一般']
], axis = 0)
label = np.array(['否', '否', '是', '是', '否', '否', '否', '是', '是', '是', '是', '是', '是', '是', '否'])
name = np.array(['年龄', '有工作', '有房子', '信贷情况'])
return data, label, name

# 创建西瓜书数据集2.0
def createDataXG20():
data = np.array([['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑']
, ['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑']
, ['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑']
, ['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑']
, ['浅白', '蜷缩', '浊响', '清晰', '凹陷', '硬滑']
, ['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘']
, ['乌黑', '稍蜷', '浊响', '稍糊', '稍凹', '软粘']
, ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑']
, ['乌黑', '稍蜷', '沉闷', '稍糊', '稍凹', '硬滑']
, ['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘']
, ['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑']
, ['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘']
, ['青绿', '稍蜷', '浊响', '稍糊', '凹陷', '硬滑']
, ['浅白', '稍蜷', '沉闷', '稍糊', '凹陷', '硬滑']
, ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘']
, ['浅白', '蜷缩', '浊响', '模糊', '平坦', '硬滑']
, ['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑']])
label = np.array(['是', '是', '是', '是', '是', '是', '是', '是', '否', '否', '否', '否', '否', '否', '否', '否', '否'])
name = np.array(['色泽', '根蒂', '敲声', '纹理', '脐部', '触感'])
return data, label, name

def splitXgData20(xgData, xgLabel):
xgDataTrain = xgData[[0, 1, 2, 5, 6, 9, 13, 14, 15, 16],:]
xgDataTest = xgData[[3, 4, 7, 8, 10, 11, 12],:]
xgLabelTrain = xgLabel[[0, 1, 2, 5, 6, 9, 13, 14, 15, 16]]
xgLabelTest = xgLabel[[3, 4, 7, 8, 10, 11, 12]]
return xgDataTrain, xgLabelTrain, xgDataTest, xgLabelTest

# 定义一个常用函数 用来求numpy array中数值等于某值的元素数量
equalNums = lambda x,y: 0 if x is None else x[x==y].size


# 定义计算信息熵的函数
def singleEntropy(x):
"""计算一个输入序列的信息熵"""
# 转换为 numpy 矩阵
x = np.asarray(x)
# 取所有不同值
xValues = set(x)
# 计算熵值
entropy = 0
for xValue in xValues:
p = equalNums(x, xValue) / x.size
entropy -= p * math.log(p, 2)
return entropy


# 定义计算条件信息熵的函数
def conditionnalEntropy(feature, y):
"""计算 某特征feature 条件下y的信息熵"""
# 转换为numpy
feature = np.asarray(feature)
y = np.asarray(y)
# 取特征的不同值
featureValues = set(feature)
# 计算熵值
entropy = 0
for feat in featureValues:
# 解释:feature == feat 是得到取feature中所有元素值等于feat的元素的索引(类似这样理解)
# y[feature == feat] 是取y中 feature元素值等于feat的元素索引的 y的元素的子集
p = equalNums(feature, feat) / feature.size
entropy += p * singleEntropy(y[feature == feat])
return entropy


# 定义信息增益
def infoGain(feature, y):
return singleEntropy(y) - conditionnalEntropy(feature, y)


# 定义信息增益率
def infoGainRatio(feature, y):
return 0 if singleEntropy(feature) == 0 else infoGain(feature, y) / singleEntropy(feature)
# 使用李航数据测试函数 p62
lhData, lhLabel, lhName = createDataLH()
print("书中H(D)为0.971,函数结果:" + str(round(singleEntropy(lhLabel), 3)))
print("书中g(D, A1)为0.083,函数结果:" + str(round(infoGain(lhData[:,0] ,lhLabel), 3)))
print("书中g(D, A2)为0.324,函数结果:" + str(round(infoGain(lhData[:,1] ,lhLabel), 3)))
print("书中g(D, A3)为0.420,函数结果:" + str(round(infoGain(lhData[:,2] ,lhLabel), 3)))
print("书中g(D, A4)为0.363,函数结果:" + str(round(infoGain(lhData[:,3] ,lhLabel), 3)))
# 测试正常,与书中结果一致

运行结果

1
2
3
4
5
书中H(D)0.971,函数结果:0.971
书中g(D, A1)0.083,函数结果:0.083
书中g(D, A2)0.324,函数结果:0.324
书中g(D, A3)0.420,函数结果:0.42
书中g(D, A4)0.363,函数结果:0.363

预剪枝

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# 创建预剪枝决策树
def createTreePrePruning(dataTrain, labelTrain, dataTest, labelTest, names, method = 'id3'):
"""
预剪枝 需要使用测试数据对每次的划分进行评估
策略说明:原本如果某节点划分前后的测试结果没有提升,根据奥卡姆剃刀原则将不进行划分(即执行剪枝),但考虑到这种策略容易造成欠拟合,
且不能排除后续划分有进一步提升的可能,因此,没有提升仍保留划分,即不剪枝
另外:周志华的书上评估的是某一个节点划分前后对该层所有数据综合评估,如评估对脐部 凹陷下色泽是否划分,
书上取的色泽划分前的精度是71.4%(5/7),划分后的精度是57.1%(4/7),都是脐部下三个特征(凹陷,稍凹,平坦)所有的数据的精度,计算也不易
而我觉得实际计算时,只对当前节点下的数据划分前后进行评估即可,如脐部凹陷时有三个测试样本,
三个样本色泽划分前的精度是2/3=66.7%,色泽划分后的精度是1/3=33.3%,因此判断不划分
"""
trainData = np.asarray(dataTrain)
labelTrain = np.asarray(labelTrain)
testData = np.asarray(dataTest)
labelTest = np.asarray(labelTest)
names = np.asarray(names)
# 如果结果为单一结果
if len(set(labelTrain)) == 1:
return labelTrain[0]
# 如果没有待分类特征
elif trainData.size == 0:
return voteLabel(labelTrain)
# 其他情况则选取特征
bestFeat, bestEnt = bestFeature(dataTrain, labelTrain, method = method)
# 取特征名称
bestFeatName = names[bestFeat]
# 从特征名称列表删除已取得特征名称
names = np.delete(names, [bestFeat])
# 根据最优特征进行分割
dataTrainSet, labelTrainSet = splitFeatureData(dataTrain, labelTrain, bestFeat)

# 预剪枝评估
# 划分前的分类标签
labelTrainLabelPre = voteLabel(labelTrain)
labelTrainRatioPre = equalNums(labelTrain, labelTrainLabelPre) / labelTrain.size
# 划分后的精度计算
if dataTest is not None:
dataTestSet, labelTestSet = splitFeatureData(dataTest, labelTest, bestFeat)
# 划分前的测试标签正确比例
labelTestRatioPre = equalNums(labelTest, labelTrainLabelPre) / labelTest.size
# 划分后 每个特征值的分类标签正确的数量
labelTrainEqNumPost = 0
for val in labelTrainSet.keys():
labelTrainEqNumPost += equalNums(labelTestSet.get(val), voteLabel(labelTrainSet.get(val))) + 0.0
# 划分后 正确的比例
labelTestRatioPost = labelTrainEqNumPost / labelTest.size

# 如果没有评估数据 但划分前的精度等于最小值0.5 则继续划分
if dataTest is None and labelTrainRatioPre == 0.5:
decisionTree = {bestFeatName: {}}
for featValue in dataTrainSet.keys():
decisionTree[bestFeatName][featValue] = createTreePrePruning(dataTrainSet.get(featValue), labelTrainSet.get(featValue)
, None, None, names, method)
elif dataTest is None:
return labelTrainLabelPre
# 如果划分后的精度相比划分前的精度下降, 则直接作为叶子节点返回
elif labelTestRatioPost < labelTestRatioPre:
return labelTrainLabelPre
else :
# 根据选取的特征名称创建树节点
decisionTree = {bestFeatName: {}}
# 对最优特征的每个特征值所分的数据子集进行计算
for featValue in dataTrainSet.keys():
decisionTree[bestFeatName][featValue] = createTreePrePruning(dataTrainSet.get(featValue), labelTrainSet.get(featValue)
, dataTestSet.get(featValue), labelTestSet.get(featValue)
, names, method)
return decisionTree

预剪枝测试

1
2
3
4
5
6
7
8
9
10
11
12
13
# 将西瓜数据2.0分割为测试集和训练集
xgDataTrain, xgLabelTrain, xgDataTest, xgLabelTest = splitXgData20(xgData, xgLabel)
# 生成不剪枝的树
xgTreeTrain = createTree(xgDataTrain, xgLabelTrain, xgName, method = 'id3')
# 生成预剪枝的树
xgTreePrePruning = createTreePrePruning(xgDataTrain, xgLabelTrain, xgDataTest, xgLabelTest, xgName, method = 'id3')
# 画剪枝前的树
print("剪枝前的树")
createPlot(xgTreeTrain)
# 画剪枝后的树
print("剪枝后的树")
createPlot(xgTreePrePruning)

后剪枝

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# 创建决策树 带预划分标签
def createTreeWithLabel(data, labels, names, method = 'id3'):
data = np.asarray(data)
labels = np.asarray(labels)
names = np.asarray(names)
# 如果不划分的标签为
votedLabel = voteLabel(labels)
# 如果结果为单一结果
if len(set(labels)) == 1:
return votedLabel
# 如果没有待分类特征
elif data.size == 0:
return votedLabel
# 其他情况则选取特征
bestFeat, bestEnt = bestFeature(data, labels, method = method)
# 取特征名称
bestFeatName = names[bestFeat]
# 从特征名称列表删除已取得特征名称
names = np.delete(names, [bestFeat])
# 根据选取的特征名称创建树节点 划分前的标签votedPreDivisionLabel=_vpdl
decisionTree = {bestFeatName: {"_vpdl": votedLabel}}
# 根据最优特征进行分割
dataSet, labelSet = splitFeatureData(data, labels, bestFeat)
# 对最优特征的每个特征值所分的数据子集进行计算
for featValue in dataSet.keys():
decisionTree[bestFeatName][featValue] = createTreeWithLabel(dataSet.get(featValue), labelSet.get(featValue), names, method)
return decisionTree


# 将带预划分标签的tree转化为常规的tree
# 函数中进行的copy操作,原因见有道笔记 【YL20190621】关于Python中字典存储修改的思考
def convertTree(labeledTree):
labeledTreeNew = labeledTree.copy()
nodeName = list(labeledTree.keys())[0]
labeledTreeNew[nodeName] = labeledTree[nodeName].copy()
for val in list(labeledTree[nodeName].keys()):
if val == "_vpdl":
labeledTreeNew[nodeName].pop(val)
elif type(labeledTree[nodeName][val]) == dict:
labeledTreeNew[nodeName][val] = convertTree(labeledTree[nodeName][val])
return labeledTreeNew


# 后剪枝 训练完成后决策节点进行替换评估 这里可以直接对xgTreeTrain进行操作
def treePostPruning(labeledTree, dataTest, labelTest, names):
newTree = labeledTree.copy()
dataTest = np.asarray(dataTest)
labelTest = np.asarray(labelTest)
names = np.asarray(names)
# 取决策节点的名称 即特征的名称
featName = list(labeledTree.keys())[0]
# print("\n当前节点:" + featName)
# 取特征的列
featCol = np.argwhere(names==featName)[0][0]
names = np.delete(names, [featCol])
# print("当前节点划分的数据维度:" + str(names))
# print("当前节点划分的数据:" )
# print(dataTest)
# print(labelTest)
# 该特征下所有值的字典
newTree[featName] = labeledTree[featName].copy()
featValueDict = newTree[featName]
featPreLabel = featValueDict.pop("_vpdl")
# print("当前节点预划分标签:" + featPreLabel)
# 是否为子树的标记
subTreeFlag = 0
# 分割测试数据 如果有数据 则进行测试或递归调用 np的array我不知道怎么判断是否None, 用is None是错的
dataFlag = 1 if sum(dataTest.shape) > 0 else 0
if dataFlag == 1:
# print("当前节点有划分数据!")
dataTestSet, labelTestSet = splitFeatureData(dataTest, labelTest, featCol)
for featValue in featValueDict.keys():
# print("当前节点属性 {0} 的子节点:{1}".format(featValue ,str(featValueDict[featValue])))
if dataFlag == 1 and type(featValueDict[featValue]) == dict:
subTreeFlag = 1
# 如果是子树则递归
newTree[featName][featValue] = treePostPruning(featValueDict[featValue], dataTestSet.get(featValue), labelTestSet.get(featValue), names)
# 如果递归后为叶子 则后续进行评估
if type(featValueDict[featValue]) != dict:
subTreeFlag = 0

# 如果没有数据 则转换子树
if dataFlag == 0 and type(featValueDict[featValue]) == dict:
subTreeFlag = 1
# print("当前节点无划分数据!直接转换树:"+str(featValueDict[featValue]))
newTree[featName][featValue] = convertTree(featValueDict[featValue])
# print("转换结果:" + str(convertTree(featValueDict[featValue])))
# 如果全为叶子节点, 评估需要划分前的标签,这里思考两种方法,
# 一是,不改变原来的训练函数,评估时使用训练数据对划分前的节点标签重新打标
# 二是,改进训练函数,在训练的同时为每个节点增加划分前的标签,这样可以保证评估时只使用测试数据,避免再次使用大量的训练数据
# 这里考虑第二种方法 写新的函数 createTreeWithLabel,当然也可以修改createTree来添加参数实现
if subTreeFlag == 0:
ratioPreDivision = equalNums(labelTest, featPreLabel) / labelTest.size
equalNum = 0
for val in labelTestSet.keys():
equalNum += equalNums(labelTestSet[val], featValueDict[val])
ratioAfterDivision = equalNum / labelTest.size
# print("当前节点预划分标签的准确率:" + str(ratioPreDivision))
# print("当前节点划分后的准确率:" + str(ratioAfterDivision))
# 如果划分后的测试数据准确率低于划分前的,则划分无效,进行剪枝,即使节点等于预划分标签
# 注意这里取的是小于,如果有需要 也可以取 小于等于
if ratioAfterDivision < ratioPreDivision:
newTree = featPreLabel
return newTree

测试

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# 书中的树结构 p81 p83
xgTreeBeforePostPruning = {"脐部": {"_vpdl": "是"
, '凹陷': {'色泽':{"_vpdl": "是", '青绿': '是', '乌黑': '是', '浅白': '否'}}
, '稍凹': {'根蒂':{"_vpdl": "是"
, '稍蜷': {'色泽': {"_vpdl": "是"
, '青绿': '是'
, '乌黑': {'纹理': {"_vpdl": "是"
, '稍糊': '是', '清晰': '否', '模糊': '是'}}
, '浅白': '是'}}
, '蜷缩': '否'
, '硬挺': '是'}}
, '平坦': '否'}}
xgTreePostPruning = treePostPruning(xgTreeBeforePostPruning, xgDataTest, xgLabelTest, xgName)
createPlot(convertTree(xgTreeBeforePostPruning))
createPlot(xgTreePostPruning)

代码参考博客: 决策树python源码实现(含预剪枝和后剪枝)